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STRUCTURE AND DYNAMICS OF THE SOLAR CORONA

1. INTRODUCTION

In this document, Science Application International Corp. (SAIC) reports the
results of a three-year study of the heating and large scale dynamics of the solar

corona. We have used advanced computational techniques to study dynamics
related to coronal heating and coronal mass ejections. In particular, we have:

. Used a three-dimensional, time-dependent, resistive MHD code to

study the dynamical response of a model corona to continuous, slow,

random magnetic footpoint displacements in the photosphere. A

statistical steady-state model corona was obtained in which the input

Poynting flux was balanced by Ohmic dissipation. The resulting corona

was characterized by filamentary current structures. A high Reynolds'

number parameter regime was identified in which dynamical,
transient reconnection events occurred.

. Performed model three-dimensional numerical simulations of the

response of the corona to simple smooth braiding flows in the
photosphere to illustrate and understand the spontaneous formation
of current filaments. Magnetic reconnection was also observed in these
calculations.

. Obtained two-dimensional, steady-state helmet streamer
configurations by determining the time asymptotic state of the
interaction of an initially one-dimensional transonic solar wind with a

spherical potential dipole field. These calculations were performed in
axially symmetric spherical geometry including gravity, density and

pressure variations, and self-consistent characteristic boundary
conditions. The resulting steady configuration had a two-dimensional,
transonic solar wind, a partially open magnetic field, a sheet-like
current structure, and flow stagnation under the helmet.

. Studied the disruption of the steady-state helmet streamer

configuration as a response to shearing of the magnetic footpoints of
the closed field lines under the helmet. The disruption and magnetic
reconnection produced a disconnected plasmoid that was ejected into
the interplanetary medium. This event had several characteristics in

common with coronal mass ejections (CMEs). In the same calculation
we were able to follow the trajectory of the ejected plasmoid to the orbit
of the earth (1 AU), and were able to determine the effect of the passage
of this disturbance on the interplanetary magnetic field (IMF). The
perturbation to the IMF was consistent with the onset of magnetic

storms in the earth's magnetosphere.



A summary of these results is given in the following sections. Scientific

papers reporting this work are in preparation.

2. MATHEMATICAL MODEL AND NUMERICAL SOLUTION

The appropriate physical model for low frequency, long wavelength motions

of an electrically conducting fluid such as the solar corona is resistive

magnetohydrodynamics. In cgs units, the equations of the model are

lonA
=- E (1)

c 3t

B = V x A (2)

¢
J = _ V x B (3)

4a:

1
E = - -v x B+ r/J (4)

C

p(-_+ v.Vv)=-Vp+-cljxB+ Pg+ pvV2v (5)

-r + V.pv = 0 (6)
3t

°_P = - V.pv -(7-1) pV.v + (7-1)r/J 2 (7)

where A is the vector potential, B is the magnetic flux density, J is the current

density, E is the electric field, v is the fluid velocity, p is the mass density, p is the

pressure, g is the gravitational acceleration, 7 is the ratio of specific heats, c is the

speed of light, 77 is the electrical resistivity, and v is an artificial viscosity.

Equations (1-7) are solved as an initial value problem in time subject to

boundary conditions. To obtain a well-posed problem, the boundary conditions

may prescribe the normal components of B and v, and the tangential component

of E. (In some cases the normal velocity may be related to the pressure and

density through the characteristic equations. In the case of viscous flow the

transverse component of the velocity must also be specified.) No other boundary

conditions are required, or indeed may be specified.

We have developed several computer codes to solve Eqs. (1-7) in two and

three spatial dimensions and time. These codes exactly preserve the solenoidal

character of B and J, and need only the required number of boundary conditions.
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Time integration of Eqs. (1-7) is difficult because of the widely separated time

scales inherent in the model. These range from fast sound and Alfv4n waves to

slow resistive diffusion. Often the system is driven from the boundary (e.g., by

shear motions) on some time scale that is slow compared to wave transit times

but fast compared to global diffusion. In order to compute on these intermediate

time scales, we have developed semi-implicit methods of time integration that

allow these calculations to proceed economically. The accuracy and efficiency of
these methods have been well documented (Schnack et al. 1990).

3. MODEL PROBLEMS OF CORONAL HEATING AND MAGNETIC

RECONNECTION

Force-free Coronal Dynamics

The mechanism that heats the closed regions of the corona is unknown.

Parker (1972) argued that the corona can be heated by resistive dissipation of

electric current filaments that are induced by the long wavelength random

twisting of the coronal magnetic field (see also van Ballegooijen 1985). The

viability of this method of coronal heating requires that the current filaments

attain a transverse scale length of I = 10 meters in response to photospheric flow

of scale length lv -_ 104 km. Theoretically, the question is twofold: can

filamentary current structure form naturally from smooth, long wavelength

photospheric motions; and, if these structures form, can their dissipation

produce significant amounts of Ohmic heating?

Parker (1972) argued that discontinuities in the magnetic field will inevitably

arise from a non equilibrium condition produced by the displacement of the field

line footpoints. In a plasma with finite resistivity, these discontinuities are

resolved into thin layers, called current sheets or filaments. Subsequently,

numerical simulations of the response of a model three-dimensional coronal

field to random footpoint motions have been performed. In one case, a sequence

of ideal MHD equilibrium solutions was directly computed

(van Ballegooijen 1988). In another case, the dynamical ideal MHD equations

were solved to obtain a sequence of equilibria (Miki4, Schnack, &

Van Hoven 1989). In both cases filamentary current structure was observed to

build in the corona as a sequence of smooth, random photospheric flows was

applied. The thinness of the filaments was limited only by the finite spatial
resolution of the numerical calculations. There is no inherent limit to the

thinness of these structures within the ideal MHD model. Thus, the first

important theoretical question is answered in the affirmative.

We have begun to investigate the second theoretical question: namely, can

these inevitable current filaments produce sufficient Ohmic power to

significantly contribute to coronal heating? To this end, we have extended of our

previous work to include the effects of finite electrical resistivity. Following

Parker (1972), the corona is modeled in Cartesian (x,y,z) geometry, with 0 < x < Lx,

0 < (y,z) < L. The initial magnetic field is taken as a uniform field BO = B0_x

3



V

B Lx

L x

Lz a_ll_z

Fisure 1. Geometry of model problem for coronal heating.

extending between two conducting plates. In this idealized configuration, these

plates represent the photosphere to which both ends of the field lines are

attached. Equilibrium field line curvature effects are thus not included in this

model. The system is periodic in the transverse y and z directions; thus, the net

longitudinal (x) current is constrained to be zero. Tangential photospheric flow

is specified on one plate (x = 0), and the response the coronal field to these

motions is given by the solutions of the MHD equations. The model is sketched

in Fig. 1.

In the quiet corona, the magnetic energy density greatly exceeds the internal

energy density of the coronal plasma, i.e., _ = 8n'p/B2.<< 1 (Tucker 1973). Since

pressure forces are thus negligible, coronal equilibria are characterized by the

vanishing of the Lorentz force, J x B = 0. Magnetic field configurations that

satisfy this condition are called force-free. In that case it proves convenient to

ignore the pressure force in the dynamical equation of motion as well

(Ortolani & Schnack 1993). In this approximation, the equation of state becomes

Vp = 0. When the resistivity is finite, the dynamical Eqs. (1-7) are, in a

convenient nondimensional form,

o_ V x (vxB) + s-lv2B (8)
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P0 - P0 v. Vv + JxB + vP0V2v (9)

where v is a viscosity and S = "rR/rA is the Lundquist number. The resistive
diffusion time is _R = 4JrL2/c2rl, rl is the uniform, constant resistivity, L is a scale

length transverse to the initial field, and the Alfvan transit time is _'A = L/VA,
where VA = Bo2/(41rpO) 1/2 is the Alfv_n velocity. Thus S --> oo is the limit of zero
resistivity, or infinite conductivity.

Typical parameters for the quiet corona are (Parker 1983) Lx _, 1010 cm,
Lx/L _, 4, BO = 10G, VA = 7x10 7 cm/sec, _'A = 14 sec, 77 = 4.8x10 -17 sec, and

"CR_" 3 x 1014 sec, which yields a value for the Lundquist number of S = 2 x 1013.

This value of S is too large for finite numerical computation, as the number of
degrees of freedom of the turbulent system will greatly exceed the storage capacity
of present computers. Our strategy is to produce a series of calculations at lower,
but yet still substantial, values of S, and examine the scaling of the results with
S.

Beginning with this initial state, we introduce finite S and apply a sequence of
thirty successive long wavelength photospheric flows. No attempt is made to
relax to equilibrium between each successive flow application. The viscosity in
Eq. (9) is taken to be v - 2 x 10 -4. The driving flow velocity is V0 = 0.0125VA,
corresponding to about 7 km/sec. (This is somewhat faster than observed flows
in order to save computer time.) The duration of each step in the flow T is
chosen to be T = 50_A.

In externally driven flows, one definition of the fluid Reynolds' number R is
the ratio of the viscous diffusion time to the driving time scale (the so-called

eddy turnover time). For the parameters described above, we have R = 62.5. In
order to retain numerical resolution at this viscosity, the Lundquist number was
chosen as S = 2 x 104.

As a result of this flow pattern, the footpoints of the magnetic field lines
execute a random walk in the photosphere. For the parameters used in these
calculations, the mean field line displacement per step and the stochastic
diffusion coefficient become (_,) = 4.96 x 107 cm, and Dst = 1.95 x 1012 cm2/sec.
This diffusion coefficient is a factor of 2 smaller than that deduced from random

motion of the supergranule boundary junctions (Parker 1983).

In Fig. 2 we plot the average value of the Lorentz force J x B in the corona as a
function of time in response to the drive. Since the equilibrium corona is
approximately force-free, large values of the Lorentz force indicate periods of
intense dynamical activity. Note that there are two large, transient deviations

from near-equilibrium conditions. In Fig. 3 we show details of the flow pattern
in the vicinity of one of the current sheets that occur in response to the drive.
This flow pattern is consistent with magnetic reconnection.
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Figure 2. Average Lorentz force in the corona as a function of time.
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Fisure 3. Transverse flow pattern in the vicinity of a current filament during dynamical phase.
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These calculations have confirmed that: 1) fine scale current density filaments

naturally and rapidly form in the corona in response to random, long

wavelength footpoint displacements; 2) the Ohmic heating rate in this

configuration is enhanced over what would arise from more broadly distributed

currents; 3) transient magnetic reconnection occurs in these intense current

filaments. These results have been described by Schnack & Miki4 (1994). A more

detailed manuscript is in preparation.

Magnetic Field Response to Simple Braiding Flows

The results presented above suggest that the tangling of field lines may lead

inevitably to the formation of thin current structures. However, the random,

statistical nature of the driving flow makes the results difficult to analyze. We

thus seek a similar problem that is both relatively simple to analyze, and yet

contains the essential ingredients of the phenomena.

It has been suggested (Vainshtein 1994) that braiding of magnetic field lines

will result in the formation of current sheets. The argument is essentially as

follows: Consider three braided field lines that stretch between two plates. As is

necessary in a braid, the algebraic sign of the twist of any braided field line must

change as the field line is traversed along its length from one plate to the other.

This twist is related to the torsion of the field: o¢ -- J • B/B 2. But in a force free

field 0_ must be constant along a field line. Thus smooth force-free equilibrium is

incompatible with braided fields, and the configuration must inevitably develop

tangential discontinuities, or current sheets. (This has been called magnetic non-

equilibrium.)

A simple photospheric flow that can produce braiding in the configuration

shown in Fig. 1 is given by (Vainshtein 1994)

= v,1(y,z)cos2 +  '2(y,z)sin2 (lO)

v = V_ × _ (11)

This flow produces alternating, overlapping Gaussians that twist the field lines

about each other in a braiding manner.

In response to this driving flow, the current shows a filamentary structure. In

Fig. 4 we plot the field lines on either side of a current filament after the

introduction of resistivity (S = 2 x 104). The change of topology that occurs is

evident, and is characteristic of magnetic reconnection. The behavior is similar

to that observed in the more complex case of random, long wavelength driving
flows.

7



Figure4. Evolution of magnetic field lines
formed in response to _ • cling flow.

on either side of the current filament



It appears that the essential dynamics that occur in the coronal heating
problem can be reproduced with the simpler braiding flow described above. By

further studying this problem, we hope to learn about the onset of magnetic

nonequilibrium as a function of braiding. By performing the simpler calculation

at different values of S we may be able to determine how this three-dimensional

transient reconnection scales with resistivity.

Simple Model of Two-Dimensional, Spontaneous Reconnection

Conversion of magnetic energy into other forms (thermal and kinetic) is a

primary aspect of solar activity. Magnetic reconnection is widely perceived to

play an important role in this process; however, the question of how

reconnection can proceed rapidly enough in the highly conducting solar plasma

to account for the observed phenomena remains an open question. One

candidate for fast, driven reconnection is the mechanism of topological

dissipation (Parker 1972, 1979). By fast reconnection we mean that the rate of

field annihilation should scale weakly or be independent of the Lundquist

number S. Unless anomalous dissipation is present, reconnection rates that scale

weakly with S are necessary to account for the rapid energy conversion observed

in solar activity (S = 1014 for the coronal plasma).

Parker (1972) established that motions at the footpoints of a uniform magnetic

field can lead to sufficiently complex magnetic field topologies (such as braided

flux tubes with several field lines wrapped around each other) that must exhibit

tangential discontinuities in the field. The process in which an initially smooth

magnetic field evolves into a configuration with discontinuities has been

described as topological or magnetic nonequilibrium (Parker 1972, 1979; Priest

1981; Moffat 1985; Vainshtein & Parker 1986; Vainshtein, Bykov, & Toptygin

1993). Real plasmas have a finite resistivity, and the discontinuities are resolved

into thin layers called current sheets. Parker (1979) argued that magnetic

reconnection must proceed sufficiently rapidly at these sheets to dissipate the

energy input by further footpoint motions.

Establishing or disproving that fast reconnection occurs in the three-

dimensional systems previously described is a difficult computational task.

Scaling the reconnection rate over a large range of S can be more easily

accomplished in an idealized two-dimensional configuration. A two-

dimensional configuration that is believed to exhibit magnetic nonequilibrium

is the rosette configuration (Vainshtein, Bykov, & Toptygin 1993). Similar

configurations have been studied in the context of the coalescence instability

(Finn & Kaw 1977; Pritchett & Wu 1979; Richard et al. 1989; Longcope &

Strauss 1993). In the starting configuration, two flux tubes with parallel current

density are placed some distance apart. The configuration is not in equilibrium;

the magnetic forces are such that the flux tubes will move towards each other.

Vainshtein, Bykov, & Toptygin (1993) have argued that the resulting equilibrium

9



configuration in ideal MHD will exhibit a discontinuity, and that in resistive
MHD, fast reconnection will occur.

We have first investigated the ideal (i.e., zero resistivity) behavior of

attracting flux tubes. We note that simulating ideal MHD behavior when

current sheets are present is not usually possible by standard numerical

treatments of the MHD equations. In the absence of resistivity, the current sheet

collapses to the mesh size and generates unphysical oscillations. However, we

were able to develop a spedal treatment of the current sheet region that exploits

the symmetry and allows the magnetic field to approach a discontinuous
function (see Miki_ & Linker 1994).

The initial and final configuration for the two flux tubes in the ideal MHD

calculation is shown in Fig. 5. Contours of the flux function (projections of

magnetic field lines) are shown on the left; a strong magnetic field out of the

plane (approximately 10 times the field in the plane) is also present. The current

density out of the plane is shown on the right. The first two frames show the

initial state and the full simulation domain; the use of nonuniform meshes

allows us to place the outer walls far away. The middle frames shows a close-up
of the flux tubes in the initial state, and the bottom two frames show the final

configuration, which the system relaxes to after about 100 Alfv6n times (_'A).

In the final state, the flux tubes have converged and a current sheet (of

opposite sign to the current density in the flux tubes) forms between them. Our

preliminary results (on a 151 x 151 nonuniformly spaced mesh) indicate that the

current sheet thickness for this configuration is controlled by the mesh spacing

and the configuration approaches a true discontinuity in ideal MHD. We plan to

verify this on meshes as much as ten times more resolved than the present case.

We have also investigated the resistive evolution of this configuration.

Figure 6 shows the evolution of the projected field lines when a finite plasma

resistivity corresponding to S = 104 is included in the calculation (the flux tubes

were also placed farther a part in the initial state). Times in Fig. 6 are given in _'A

(both _'A and S are scaled by the total magnetic field). Figure 2 shows that the flux

tubes merge together rapidly. We can estimate the reconnection rate for this case

by computing (dW/dt)/W, where W is magnetic energy of the planar component

of the field. Figure 7 shows this plotted over time (the rate is computed based on

the planar Alfv4n time); there is a sharp rise in the reconnection rate as the flux

tubes approach each other. We plan to perform several calculations at different S

to see how this rate scales with S. A wide range of S should be possible, because

the two-dimensional nature of the problem allows one to place many mesh

points in the vicinity of the current sheet.

10
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Figure 5. Initial and final configurations of merging flux tubes with zero resistivity (ideal Iv_--ID).
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Figure 6. Evolution of merging flux tubes with finite resistivity (S = 104).
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Fisure 7. Reconnection rate vs. time for merging flux tubes with S = 104.

4. LARGE SCALE CORONAL DYNAMICS

In addition to the model problems discussed above, we have used the full set

of resistive MHD Eqs. (1-7) to study large scale dynamics of the solar corona in

spherical coordinates. In particular, we have been applying our models to the

formation and disruption of helmet streamers, and the initiation and

propagation of coronal mass ejections (CMEs). The calculations are global in the

sense that they cover the entire sun and interplanetary space to distances beyond

the earth's orbit (I AU). Calculations of this magnitude are possible only because
of the numerical methods described in Section 2.

Formation of a Helmet Streamer

Helmet streamer configurations have been modeled via numerical solution

of the MHD equations by a number of authors (Pneumann & Kopp 1971;

Endler 1971; Steinolfson, Suess, & Wu 1982; Washimi, Yoshino & Ogino 1987;

Linker, Van Hoven, & Schnack 1990; Wang et al. 1992). One advantage of this

approach is that it facilitates using the streamer model as the initial condition

for other coronal simulations (Steinolfson & Hundhausen 1988; Linker,

Van Hoven, & McComas 1992). We compute a two-dimensional (azimuthally

symmetric) helmet streamer configuration by imposing a spherically symmetric

transonic wind solution on an initially dipolar magnetic field and allowing the

configuration to evolve in time until a steady state is reached. Spherically

symmetric polytropic wind solutions were formulated by Parker (1963); these are

13



steady-state solutions of the 1-d mass and momentum equations for a gas that

obeys the polytropic law p/pr = constant. Polytropic wind solutions have the

advantage that relatively simple models can match many of the properties of the

corona. However, values of y close to 1 are necessary to produce radial density

and temperature profiles that are similar to coronal observations; this reflects the

fact that important thermodynamic processes, such as heating, radiation, and

thermal conduction, have been omitted from the energy equation (Parker 1963).

We choose y = 1.05, as previous authors have done (Steinolfson, Suess, & Wu

1982; Washimi, Yoshino, & Ogino 1987).

With these initial and boundary conditions, Eqs. (1-7) were integrated

forward in time for over 130 days (17,700 _'A) to ensure that the configuration was

in a steady state. Figure 8 shows the contours of the flux function Ig = rA_sinO

and contours of the azimuthal current density J_. Contours of _¢ delineate

magnetic field lines. The plasma is essentially stationary inside the closed-field

region but flows outward along field lines in the open field region. The plasma

density and pressure are larger in the closed-field region; the pressure force is

balanced by the Lorentz force at the current sheets. The magnetic field is nearly

potential everywhere except at the current sheets.

In Fig. 9 we show a reconstruction of the polarization brightness using

integrated line-of-sight density from one of our calculations using a more

complex flux distribution at the solar surface. This is how the calculated

streamers might be viewed with a coronameter.

(a) (b)

Figure 8. Contours of the flux function and azimuthal current density in a two-dimensional
helmet streamer configuration.
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Figure9. Reconstructedpolarizationbrightnessbased on integratedline-of-sightdensity

obtainedfrom a calculatedhelmetstreamerconfiguration.

Disruption of a Helmet Streamer

To investigate the effects of magnetic shear on a helmet streamer, we

introduced a shearing motion at the photosphere and continued our time

integration of the MHD equations. Figure 10 shows the evolution of _ for the

helmet streamer after shearing flows are introduced. Only a portion of the

simulation domain is shown; the outer boundary is at 20 Rs. The _ contours

show projections of the magnetic field lines; the field also has a longitudinal

component out of the plane, in response to the shear applied at the magnetic

field footpoints, the closed-field region expands slowly, and the lower field lines

beneath the helmet are squeezed towards the equator, causing J_ to increase.

Eventually the magnetic field lines erupt outward, the magnetic field reconnects,

and a plasmoid is ejected into the outer corona.

Reconnection causes the nearly fully opened helmet streamer to reform. As

the reconnection proceeds, the closed-field region grows in size as successively

higher loops reconnect, a phenomenon that has been observed in recent Yohkoh

soft X-ray images (Hiei, Hundhausen, & Sime 1993). After the helmet streamer

reforms, it has a smaller closed-field region and higher magnetic energy than the

initial streamer. With continued shearing, the streamer builds up more energy

and disrupts again at approximately the same level of magnetic energy as the first

disruption. The subsequent disruption events are very similar in character to

the first event. The solar wind appears to contribute to the disconnection of the

15
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t = 485 hours t = 496 hours

(e) (0

t = 510 hours t= 769 hours

Figure 10. Evolution of the flux function for the helmet streamer in response to photospheric
shearing flows.

plasmoid. Once the magnetic field expands upward, plasma on the field lines is

accelerated by the local solar wind flow, dragging the magnetic field upward
further until the field lines reconnect.

In the field of view of a coronagraph (e.g., 6 Rs for the Solar Maximum

mission, MacQueen et al. 1980), the visible manifestations of the disruption

described here would be associated with the initial upward movement of the

magnetic field lines, which occurs well before the onset of magnetic

reconnection. During this phase of the evolution, field lines that were originally

very close to the coronal base rise to large heights in the corona. For example,

16



the field line with a height of 1.03 Rs at its apex in the unsheared helmet

streamer rises to a height of 4.8 Rs before disconneding from the photosphere.

Therefore, ifa low-lying prominence were embedded in this helmet streamer, it

would erupt outward, as is often observed in CM_s. These results are described

by Linker & Mikit (1994). The physics underlying the disruption is described by

Mikit & Linker (1994).

Propagation of a CME to 1 AU

One paradigm for the cause of terrestrial magnetic storms is the passage of a

CME launched from the sun past the earth's orbit (1 AU ~ 215 Rs) (Gosling 1993;

Hundhausen 1994). As an initial test of this hypothesis, we have used our

computati_ models to form and disrupt a helmet streamer and then follow

the trajectory of the resulting plasmoid through interplanetary space past 1 AU,

all in the same calculation. We can then determine the effect of the passage of

the plasmoid on the interplanetary magnetic field (IMT) at earth, and see if it is

consistent with signatures of the onset of magnetic storms. These are the first

steps in a seE-consistent model of "space weather."

In order to determine the effect of the passage of a CME on the IMI= at earth,

the spiral form of the solar field due to the sun's rotation must be reproduced.

We do this by introducing solar rotation after the formation of the steady-state

helmet streamer configuration described in the previous paragraphs. The

rotation of the sun is then viscously and magnetically coupled to the solar wind,

and its effect can propagate into the IMF as Alfv4n waves. After approximately

3.8 solar rotations (~ 100 earth days) a new steady-state configuration is reached.

The spiral structure of the IMF is shown in Fig. 11.

HEL04

Figure 11. Spiral structure of the IMT between the sun and the earth.
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In Fig. 12 we show detail of this configuration near the sun. Note the dosed
helmet structure that remains.

This structure is then subjected to photospheric shear, as described
previously. The resulting disruption appears much as in the case with no
rotation, except we now continue the calculation until the disturbance passes
1 AU. The perturbation in the IMT at earth during the passage is shown in
Fig. 13. (Here, B0 is the "north-south" component as viewed from earth.) The

passage clearly induces a southward (negative B0) component of the IMT.
Southward IMF has been correlated with the onset of terrestrial magnetic storms.

HEL04

Figure 12. Detail of magnetic field near the sun for the configuration shown in Figure 11.
The helmet streamer is visible.
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Figure 13. Computed perturbation to the IMF at earth during the passage of a CME.
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